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A general procedure for constructing Noether conserved currents in the stochastic quantization scheme corresponding to 
symmetries of the equilibrium theory is proposed. Two different regularizations - the Breit-Gupta-Zaks stochastic time 
regularization and a new supersymmetric regularization - are employed, and the origin of chiral anomalies is exhibited in this 
framework. 

1. By its introduction [1] the stochastic quantization scheme (SQS) was intended to give an alternative way of  
quantization of  field theory models as well as to provide new invariant regularizations [2] which presumably re- 
spect simultaneously all symmetries of  the underlying models. 

In usual field theory symmetries of  the classical action correspond via the Noether theorem to conserved cur- 
rents which, upon quantization, yield Ward identities for the correlation functions of  the quantum fields. Unlike 
this, the original formulation of SQS [1 ] in terms of  the Langevin equations is not based on an action principle 
and, therefore, the symmetries of the SQS averages were not expressed in terms of Ward-like identities. 

In the present letter we propose a general procedure for deriving SQS Noether conserved currents within the su- 
perspace formulation [3,4] of SQS. In fact, these SQS currents appear as conserved supercurrents in the auxiliary 
(D + 112)-dimensional superspace [with coordinates z = (x, r; 0 , 0 ) ,  x ~ R/) ] .  After introducing a new invariant 
regularization respecting the stochastic supersymmetry, we show that only the lowest components (in the 0-expan- 
sion) of the SQS Noether currents survive in the equilibrium limit and yield equilibrium Ward identities coinciding 
with the standard ones. The same result is achieved by employing the Bre i t -Gupta-Zaks  (BGZ) regularization [2] 
in the superspace approach. 

The question of  anomalous chiral symmetries in this framework is also considered. Although there exists a clas- 
sical" Noether conserved chirat supercurrent in (/9 + 112) dimensions, upon quantization it precisely yields the cor- 
rect standard (covariant) chiral anomalies in the equilibrium limit. This phenomenon is here understood from the 
point of  view of both regularizations - the BGZ and the supersymmetric one. 

2. Let us begin with briefly recalling the superspace formulation [3,4] of SQS. In short-hand notations the 
Langevin equations for a general D-dimensional field theory model with a classical action S[~] = f d D x  ~(~p) read 

~ % = - ~ 8 S / 8 ¢ 1 ~ : ~  + n, (n(x,  r )n(x ' ,  r ' ) )  = 2 ~ 8 ( r  - r ' ) ~ t D ) ( x  - x ' ) ,  ( 1 )  

where ~X = ~ [0 x ] denotes an appropriate differential operator (in x) which ensures the positiveness of  the corre- 
sponding Fokker-Planck hamiltonian [5,2]. More generally, ~ may be chosen to depend functionally on ~ and 
in this case (1) is changed as follows [5,61 : 

O r ~  = - c'K. ~S/6~o[ ~ = ~  + ~K r/1 - i~72, (1 ') 
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<T/I(X, 7)772(X', 7')) = --i(~(7 - 7')(5(D)(x -X ' ) ,  <r/1,2~1,2>= O, (1' cont'd) 

where two independent random sources are introduced. 
Choosing initial conditions for (1) ~pn(x, r = _oo) = O, the generating functional of the SQS averages of solutions 

~ to (1), 

' f (f ) ~x Tr l n ~ )  q) r~ exp dDxdr[-~r~ 'X- l r l+hso]  (2) 

(x = +1 for ~, r~ being bosons or fermions respectively), turns out to be (formally) equal to the generating function- 
al of the correlation functions of  the following supersymmetric field theory in (D + 112)-dimensional super@ace: 

Z[h] = ~Z[H] = f c3~ ,exp( fdD+l l2z ( -Z[q ' ]  +Hcb)), (3) 

2; [q~] = f d D+ll 2 z [½ D~ oK-1 Drip _ ½D~CK -1Dqb _ i Z3(,I~)I , 

The re 

,~(z) = ~(x, r) + Ox(x, "0 + ~(x, "0o + OO F(x, r), 

D= 3/30, [) = 3 /30- i03r ,  {D,D} = - i 3  r. 

H(z) = OOh(x, r), 

(4) 

(5) 

The form of the grassmannian derivatives D, D corresponds to a chirat representation of the supersymmetry trans- 
formations with generators 

1 .  Q=O/oo+liOar , ( 7 = 0 / 3 0 + 7 1 0 3  T, {Q,(Y}=iO r, 

6"~(z) (eQ + fQ_)~(z) "~(x, " - - = = r+71(eO O e ) , O + e , # + ~ ) ,  "~(z)-exp(-~iOOO}ee(z) .  (6) 

It can be straightforwardly checked that formulae (3), (4) remain valid also for the more general SQS (1') where 
= cK [q5; 3x ] now explicitly depends on the superfield ~: 

( ) ' H  Z'[h] =fcJ~r? 1 @r/2ex  p fdOxdrI i rhr12+h%] = Z  [ 1, Y/lq'l =2;[~1 +2;1[~1 (3 ' ,4 ' )  

In what follows we shall not need the explicit form of ~1 [qb] since it vanishes for background (not quantized) 
fields. 

Also, in this case we have r/2(x, r) = F(x, r), where F is the highest component in the 0-expansion of  q5 (5). Let 
us note that eqs. (3), (3') are particular realizations of  the Nicolai map [7]. 

It is easy to see (cf. ref. [4] ) that the super@ace action 2; [q~] (4) respects all symmetries G of  the original D-di- 
mensional action S[¢] [provided cK was chosen in such a way that (1), (1') remain G-covariant]. Then we can ap- 
ply the standard Noether procedure to find conserved currents in the (/9 + II 2)-dimensional supersymmetric theory 
which will precisely represent the SQS analogues of  the usual Noether currents in D dimensions. 

Indeed, the Noether theorem implies, due to the G-invariance of (3), the existence of the following conserved 

(7) 

(8a) 

(8b) 

supercurrent: 

5Jo [~l + DJ~ [~.] + a e ,  [~1 = 0. 

Jo [qb] = i~Sqb(Q~ 1Dq~), J0-Ia'] = --i6qb(CK-1Dqb), 

J [qq =/ ,  [~] - ~i(D,I,)(a ~X-1 [B]/aB I )(5~) + ~i(5~)(a ~ - 1  ,- B=O [B]/6BulB:o)(D¢,),  
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i .  [q'l = s4,(a  x?/a (a <I,) - <)e u), 

where 6~, 6 ~7 = 8uc)7 u denote the standard variations under the corresponding G-transformations and 9( [B] 
= CE [Ox + B] is the gauge-covariant counterpart of CE [Ox ] with B u being an auxiliary G-gauge potential. 

(8c) 

3. In proceeding with the quantization of the supercurrents (7), (8) we shall use the proper-time representation 
of the free qS-propagator. This representation offers a possibility to introduce a new ultraviolet regularization mani- 
festly preserving all symmetries of the original theory defined by S [¢] as well as preserving the stochastic supersym 
metry. We have 

(~z() q?z'())reg(0) =ice f d~OA(~)exp(_acES,,)(x,x " - 0'), 
0 

where 

8(2)(0-0')----(0 O')(0 0'), S " -  82S/8~o21 e=o , - - 

and the regularizing function pa(a) obeys the properties 

lira 0A(a )= l ,  (dk/d~k)0A(a)l~= 0 = 0 ,  k = 0 , 1  ..... L (~>~0), 

(9) 

(10) 

L being an appropriate integer depending on the spacetime dimension D. A particular choice of 0A(a) is 

PA(a) = l  -- exp( -a~)  (k~=0 ~ (A~)k) • (10') 

With the regularized propagator (9), all eventual ultraviolet divergences in the diagram expansion of ~Z [H] (3) 
which manifest themselves as singularities O(~-k), k >~ 1, in the proper-time integrals entering the diagrams are 
regulated by pA((~). 

It is easy to show that, due to the r-translation invariance and the supersymmetry (6), all equal-r and equal-0,0 
correlation functions given by (3) are in fact r- and 0-independent and, therefore, they are equal to their equilib- 
rium limits: 

(~(Xl, r; O, O) ... a~(x N, r; O, 0)) = lim (~O(Xl, r) ... ~O(XN, r ) )  = (~O(Xl) ... ~P(XN)} 
T - - + ~  

Property (11) will be important in analyzing the Ward identities corresponding to the Noether conserved supercur- 
rents (7) in the next section. 

4. Now we shall apply the general scheme described in sections 2, 3 to the SQS for fermions ~(x, r) in an exter- 
nal background U(n)-gauge field Au(x). In this case eqs. (1), (3), (4) are specialized with 

siC, 71 =fdDx CE =rn - i~' (cf. refs. [6,8,21), 

a I H ,  ff] =f~q~ exp(-Z[,I,,~] +fdD+ll2z(Hq~+~'H)) ,  (12a) 
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2:[~I,, ~] =fd  D+I r2z {D~(m - i T) -11)'.P - lSqffm - iT) -I Dq~ + i~(m + iT)q j )  (cf. also ref. [9]),  (12b) 

with the following notations: 

T ='Yu[au +iA (x)] ,  {Tu ,Tv } = - 2 8 u ~  , Au(x ) = TaAau(x), 

q,(z) = ~(x, r) + O% (x, r) + co2(x , 7-)0 + OOg2(x, r), 

~(z)  = "~(X, 7") + 0~2(x ,  r) + ~l (X,  7.)0 + O0~(X, 7.), (13) 

where the tilde corresponds to Dirac conjugation and {T a) (a = O, 1, ..., n 2 - I) form a hermitian basis of the 
U(n)-generators. 

The classical conserved Noether supercurrent corresponding to the vector U(n) invariance of (12) reads 

Jo(Z) = i[D'~(m - iT) 1] T a ,  + i ~ r  a [(m - iT ) - lDqJ ] ,  (14a) 

Jo(Z) = - i [ I ~ ( r n  - iT) -1 ] Taq~ - i~T a [(m - iT) - 1 D ~ ]  (14b) 

Jau(z ) = ~Ta(- iTu)q ~ + [I)~(rn - iT) 1 ] TaTu [(m - iT) -1Dq ~1 - [D~(m - iT) -1 ] TaTu [(m - iT) -1 l)q~], 
(14c) 

DJo + DSo + Vabjb = O. (15) 

Likewise, the axial U(n) symmetry of  (12b) when m = 0 implies the existence of a conserved classical axial 
Noether supercurrent (here D is even): 

J~D+l)a(z) = i~Ta3 '(D+I) [(m - i T )  l Dqt] - i [ D ~ ( m  - i T ) - l l T a ' y ( D + l ) q ~ ,  (16a) 

J~oD+l)a(z) = - i ~ T a 7  (D+I) [(m - iT) -1 [)~P] + i [Dqt(m - iT) -1 ] TaT(D+l)q ;, (16b) 

7D+I )  J(D+l)a(z)=~Ta(--iTu)"/(O+l)qt+ [D~(m - iT) 1]Ta~' u ( [(m - i T )  1D~]  

- [D~(rn - iT) -1 ] TaTu@ D+I) [(m - iT) -11)q~]. (16c) 

The classical conservation law for (16) reads 

=_2mqtTaT(D 1)qj ~)_l(D+l)a Dj(D+I) a + ~Tabj( D+l)b ~ + 

-- 2im [D~(m - iT) -1 ] Ta') '(D+I) [(m - iT) -11)~]  + 2im [f i~(m - iT) -1 ] Ta@ D+I) [(m - iT) - 1 D q q .  (17) 

Due to the general property (11) only the lowest components in the 0-expansion [cf. (13)] of eqs. (15) and 
(17) carry physical information in the quantum averages. 

We shall evaluate the quantum expectation values of  eqs. (15), (17) by using two different regularizations of 
the fermion propagator. The first one is the supersymmetric regularization (9) giving 

<*(z)~(z'))SreUg y = (m - iT) {-- 1 i pA([ r -- r '[)  exp [--(m 2 + T2)I 7" - 7"'1] (x, x')8 (2)(0 - 0 ') 

o o  

+]1 [D, ~]6(2)(0 - 0 ' )  t f - r ' l  da OA(~) exp [--°~(m2 + T2)] (x' x')" (18) 

The second one is the BGZ regularization [2] which amounts to the following change of  the grassmannian deriva- 
tives (5): 

D = a/ao, I3 = ~ a a / a 0  - i 0 a .  (5') 
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The BGZ-regulated propagator (after taking the Fourier transform with respect to r-r') reads 

('t,~)BGz(X, 0, 0; x', 0', 0'; co) = (m - ig) {8"A(co)(m 2 + g2 + co2)-I + ~(0' -- 0)0 [co -- i(m 2 + g2)] -1 

+-~(0' -- 0)0' [co + i(m 2 + ~2)1-I }(x,x,). (19) 

In eq. (19) 8A(co) denotes the Fourier transform of the BGZ-regularized 6-function 8A(r -- r') entering eq. (1) 
and obeying the properties 

lim 6A(a )=8(a) ,  8A(--a ) =SA(a), (dk/dak)SA(a)l~=O =0, k= O, 1 .... ,L ' ,  (20) 
A--+~ 

where L' is an appropriate integer depending on D. In eq. (5 ') 8 A denotes an integral operator with kernel 
8 A(r -- r'). Comparing (20) and (10) we see that one can take 

28A(a ) = (d/da)PA(a) (a ~> 0). (21) 

Although the above regularizations are completely different [note from (19) that the BGZ regularization explicit- 
ly breaks supersymmetry (6)] one can show that in the equilibrium limit they yield identical results for the regulai 
ized diagrams of (3). In particular, this holds for the expectation values of (15) and (17). 

Since the regularization (18) explicitly preserves supersymmetry, then accounting for (11) we get: 

D(S~(z)) = I)<J~(z)> = 0, D(J(D+l)a(z)) = [)<s(D+l)a(z)) = O. (221 

Next, from (10) and using the algebra (5) of the D, D-derivatives, we find that only the lowest superfield compo- 
nent of the first terms on the RHS of (14c), (16c) survive in the expectation values: 

(Ju(Z)) = (~(x, r )Ta( - i yu )~(x ,  r)) = f da 0a(a  ) tr[Tayu(im + V~) exp[_a(m 2 + ]g2)] (x, x)], (23) 
0 

( J f +  l)a(z)) = (~(x, r) Ta(-iq,  u)7(D+ l)t~(x, r)) 

= f da pA(a) tr[Tayuy(D+l)(im + vff) exp[_a(m 2 + 3~2)] (x, x)]. (24) 
0 

Expressions (23), (24) exactly coincide with those obtained in ref. [10] using the BGZ regularization in the 
Langevin approach, provided PA(a) and 8A(a ) are connected by (21) [this can also be directly checked using 
(19)]. As a consequence, as it was already demonstrated in refs. [ 10,11 ], we get quantum conservation of the vec- 
tor U(n) symmetry: 

vaub(~(x, r)Tb(-- iTu)~(x,  r)) = O, i.e. (E)Jo(z) + DJo(Z ) + ab b V,, J(z)) = 0, (25) 

and, accordingly, we obtain the standard U(n)-axial anomaly: 

lim gab(~(x, r)Tb(--iv~,)~,(D+l)~(x, r)) = 2sga(x) + 2 tr[Ta"r{n+l)no (x, x)] ,  
m..+0 t* 

sga(x) = [(D/2)! (4rr) D/2 ] -1 tr [TaFul u2 (x) ... F D-* uD(X)] eul ... UD' 
i.e. 

lim (E)j~D+l)a(z) + DJ~D+I)a(z) + ab {D+ V u J~ 1)b(z)) = --2sa~a(x)+ 2 tr[TaT(O+l)II~o(X,X)] (26) 
m..+O 

where Ilo ~ denotes the kernel of the zero-mode projector of ~' and eq. (22) was accounted for. 
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Now, let us check eq. (26) with the BGZ regularization (5'), (I 9). In this case (22) does not hold and, therefore, 
we consider the lowest component of the full expression in (17), (16) 

vaub('~Tb(--iTu)T(O+l)d/) + 2 i [ ~ l ( m  - i~) -1 ] TaT(D+I)sAco 1 _ 2i[SA~2(m -- i~) -1 ] TaT(D+I)co2 

_ i[(2~n ~ _ i 0r~)(  m _ i ~ ) - l ]  Ta@D+l)t~ + i~TaT(D+ 1)[(m - iF)- l(2~Ag2 --iOr~)] 

= -2  m~Ta7 (D+ 1)~. (27) 

Performing the quantum average, the last two terms on the LHS of (27) cancel and we obtain 

vab('~Ta(_ iTu)3,(D+ 1)~) = _ 2 i ( [ ~ 1 (  m _ i~ff)- 1 ] Ta,y(D+ 1)~AO,)I ) 

+ 2 i ( [ ~ A ~ 2 ( m - - i ~ )  1] Ta@D+l)co2)_2m(~Ta@D+l)d/). (28) 

The remarkable feature of eq. (28) is that the COl,2-terms precisely yield the standard covariant U(n)-anomaly. In- 
deed, computing the averages of the COl,2-terms in (28) from (19) we get 

- 4 .,f -~- tr[T%'(D+l)~'A(co)(m2 + ~2 + i w ) - l ( x , x ) ]  lira 
A - - + ~  

oo 

= lira - 4 f dc~ 6A(a ) tr[Ta@ D+I) exp [-c~(m 2 + ~72)] (x, x)] = - 2 M a ( x ) .  

0 

Thus, once again the anomalous Ward identity (26) is derived. 
As it was already stressed in ref. [11],  there is no contradiction between the following two properties of SQS: 
(i) Manifest preservation of chiral-gauge symmetries in the SQS averages [either given by the Langevin (2) or the 

superspace (3) generating functional[ through invariant stochastic regularizations (either the BGZ regularization 
(18) or the supersymmetric one (9)); 

(ii) Appearance of the correct chiral anomalies (26). 
Tire reason for the above fact is as follows. The present chiral symmetry-preserving regularizations of the SQS 

averages do not simultaneously regularize the quantum fermion effective action 

Sef f = Tr ln [ - i~ ' ]  (29) 

[in particular, for the choice (10'), (21) they give in the equilibrium limit regularization of the fermion propagator 
(18), (19) with higher covariant derivatives[. However, Seff (29), whose chiral non-invariance is responsible for the 
anomalous chiral Ward identities, does not enter SQS at all since (29) can never be represented as a SQS average of 
a certain functional of the solutions ('~)~(x, r) to the Langevin equations for fermions or, equivalently, as a quan- 
tum average of a functional of the superfields (~)(z).  In the superspace formulation (12) the origin of the SQS 
chiral anomaly (26) can be understood along the lines of the Vergeles-Fujikawa method [12] as non-invariance of 
the fermionic superfield functional measure in the generating functional (12a) with respect to (infinitesimal) U(n)- 
chiral change of variables: 

aft(z) --> exp[ia(z)T (D+ I)] qffz), ~(z) -+ ~/(z) exp[ia(z)y(D+ l)] , 

cbqs @ "~-+ @ q~ CO ~ exp ( f  dD+ l12z oLa(z) s~ a(x)) . 

To recapitulate, we have formulated a general scheme for constructing stochastic Noether conserved currents 
based on the superspace approach [3] to SQS. These stochastic currents reduce to the ordinary Noether currents 
in the equilibrium limit [cf. (25), (26)] .  In particular, the correct chiral anomalies (26) are reproduced from the 
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classically conserved (for m = 0) SQS chiral supercurrent (16) and the mechanism responsible for this is under- 

stood. 
After completion of our manuscript we learned that M.B. Gavela and N. Parga have independently treated the 

problem of stochastic Noether currents in a different approach starting from Gozzi's functional integral formula- 
tion of SQS [13]. 

We thank S. Fubini  and N. Parga for their interest and discussions. One of us (R.K.) is grateful to the CERN 
Theory Division for kind hospitality and he acknowledges conversations with H. HiJffel and M.B. Gavela. 

References 

[1 ] G. Parisi and Y,S. Wu, Sci. Sin. 24 (1981) 483. 
[2] J. Breit, S. Gupta and A. Zaks, Nucl. Phys. B233 (1984) 61. 
[3] E.S. Egorian and S. Kalitzin, Phys. Lett. B 129 (1983) 320. 
[4] R. Kirschner, Phys. Lett. B 139 (1984) 180;CERN preprint TH-4403/86. 
[5 ] B. Sakita, in: Proc. 7th Johns Hopkins Workshop (World Scientific, Singapore, 1983). 
[6] K. Ishikawa, Nucl. Phys. B241 (1984) 589. 
[7] H. Nicolai, Phys. Lett. B 89 (1980) 341; Nucl. Phys. B176 (1980) 419. 
[8] P. Damgaard and K. Tsokos, Nucl. Phys. B235 [FS 11] (1984) 75. 
[9] S. Chaturvedi, A. Kapoor and V. Srinivasan, Phys. Lett. B 140 (1984) 56; 

E.S. Egorian, Phys. Lett. B 144 (1984) 73. 
[ 10] E.S. Egorian, E.R. Nissirnov and S.J. Pacheva, Sofia preprint INRNE-Nov-1984, extended version to be published in Teor. 

Mat. Phys. (1986). 
[11] E.S. Egorian, E.R. Nissimov and S.J. Pacheva, Lett. Math. Phys. 11 (1986) 209; 

E.R. Nissimov and S.J. Pacheva, Lett. Math. Phys. 11 (1986) 373. 
[12] S. Vergeles, Moscow Landau Institute preprint (1975); 

K. Fujikawa, Phys. Rev. D 21 (1980) 2848. 
[13] E. Gozzi, Phys. Rev. D 28 (1983) 1922. 

330 


